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Note 

A More Accurate Method for the Numerical Solution of 
Nonlinear Partial Differential Equations 

Numerical solutions of nonlinear partial differential equations are inherently inac- 
curate due both to round-off errors and to the fact that they can only approximate the 
true differentials. In this paper we propose a general two-step method which reduces 
the latter source of error by partially solving the equations analytically rather than 
totally numerically. Recent studies [ 1,2] performed independently from the present 
study discuss in detail the additive splitting of hyperbolic partial differential equations 
in order to solve such equations. In our investigation we apply such a technique to a 
simple model in order to illustrate the value of solving, at each time step, part of the 
system analytically, and then using this result in the numerical computation needed to 
complete the time step. 

As a concrete example of our method we shall concentrate on solving the system 

u, = --uu, - gh,, h, = -Id?, - hu, * (1) 

These are the equations for one-dimensional fluid flow in a shallow tank, where u is 
the velocity in the positive x direction, h is the height of the fluid surface above the 
tank bottom, and g is a constant (gravity). 

As an illustration of the type of error we hope to reduce, we look at the linearized 
version of (1) 

u; = -ghk, II; = 4,u;. (2) 

Here we have let U(X, t) = u, + U/(X, I) and h(x, t) = h, + h(x, t) and assumed u,, = 0. 
If we impose initial conditions of 

h’(x, 0) = cos(kx) and u’(x, 0) = (g/h,)“’ h’(x, 0) (3) 

and periodic boundary conditions (i.e., no reflection), we can solve (2) analytically as 

h’(x, t) = cos(kx - of), u’(x, t) = (g/h,)“* h’(x, t). (4) 

Here k = 27r/(A dx) is the wave number (where ;1 dx is one wavelength) and 
o = 2x/P, where the period P is the time required for a wave to traverse the distance 
A Ax. 

342 
002 l-999 1/83/020342-O7$03.OO/O 
Copyright 8 1983 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



MORE ACCURATENONLINEARSCHEME 343 

In [3] the finite difference version of (2) is analyzed as to its accuracy. The finite 
difference approximation does not introduce any amplification factor but does exhibit 
a pronounced phase error. This is expressed as the ratio of calculated (c) to exact (c,) 
wave speeds : 

c/c, = (+kAt(ghJ”*)-’ sin’(y(4 - JJ’)“‘/~) 

is one of three equivalent expressions, where y* = gh,(dt/dx)* sin* k Ax. This error 
can be appreciable; for the parameters used in our examples of the next section this 
ratio would be .901. 

Admittedly, a simple finite-difference scheme may not be the most accurate 
numerical method for (2), but we shall see that our two-step scheme performs well 
even when its numerical portion is done using finite differences. Intuitively, we expect 
that the sort of error encountered in the numerical solution of (2) also contributes to 
the error of the numerical solution of (1), and that techniques which improve the 
accuracy of (2) have the same effect on (1). Our two-step method makes use of this 
idea. 

NUMERICAL EXPERIMENTS 

In the numerical work reported here we use initial condition (3) with g = 10 and 
ho= 1.6, a At/Ax ratio of 0.125 (gho)-‘I* unless otherwise stated, and a wavelength 
of 8 Ax. We drop the primes from U’ and h’. All calculations were coded in Fortran 
77 and run on a VAX 1 l/780 minicomputer. 

In order to evaluate the accuracy of our proposed scheme vis-a-vis a totally 
numerical technique, we would like to know the exact solution to (1). The best we 
can do is compute a highly accurate solution (which we shall call “exact”) using a 
spectral method. 

To effect this we express u and h in terms of truncated Fourier series. Our 
periodicity of 8 Ax dictates the form 

u = c (a, cos nx + b, sin nx) + a4 cos 4x + b, cos 8x, 
??=I 

(5) 

where a number of the trigonometric terms are skipped because they add no new 
information on the eight grid points; h is expressed analogously. 

For use in the spectral scheme, (1) becomes 

24 ‘+’ = U= - At(u’u: - gh;), (ha) 

h r+‘=hT-At(~‘+‘h:-hu:+l), (6b) 

where the superscripts denote the time step. At each time step we calculate uTt’ and 
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hrf ’ for the eight grid points then fit these new values to series of form (5) to get new 
coefficients, thus always working with S-term series at each step. 

For increased accuracy we reduce the time step by a factor of five compared to 
that specified above. These “exact” results are graphed in Fig. 1. 

A spectral method is generally too expensive for detailed geophysical calculations, 
More practical is the simple finite difference approximation to (1) given by the 
following equations: 

,;+l=$ -u;(ui-u;-l)-~(h;+,-h;_,) +I$, 1 
ui(u;+l-Uj’)-~(h;,,-h;_l) +u” 
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FIG. 1. Wave amplitude h as computed by the compared methods (wave speed u behaves similarly, 
(a) after 20 time steps, (b) after 40 time steps. 



MORE ACCURATE NONLINEAR SCHEME 345 

h;+I =g -uji’(hj-h;,)-h;~(u;::-u;+:)] +hf, if uJ+‘>O, 

0) 

;+‘(hJ+, - hj’) - hJ +(u;;: - u;::,] + hf if u;+‘gO. 

The superscripts here refer to the time step and the subscripts to the grid point. The 
solution as computed by (7) is also plotted in Fig. 1. 

With the two-step method of solution we first solve linear system (2) analytically. 
The result is (4), which we propagate by one time step, giving us intermediate 
solution values denoted by h* and u *, 

h * = cos(kx - o At), u* = (g/h(p h”. (8) 

As the second step we use this intermediate solution in the numerical computation 
necessary to complete the time step. Analogous to (7) we have 

u;+‘=- ;i [- qu; - u;-J + u*, if uj’ > 0, 

= 2 [- ui’(ui”+ * - ui’)] + u*, 

Pa) 
if uf<O; 

[ 
-u;“(hj-hj_,)-hj~(uj::-uj+:)] +h*, if uf+‘>O, 

At 
W) 

=dx 
-u;“(h;,,-hj-h;~(u:::-u;+:)] +ll*, if uJ+‘<O. 

Note that except for u* and h* all the terms on the right-hand sides of (9a) and (9b) 
are nonlinear. 

The solution as computed with scheme (9) is also displayed in Fig. 1. It is apparent 
that the two-step solution eliminates much of the phase error found in the straight 
linite-difference solution. Both the finite-difference and two-step solutions show an 
asymmetry (overshoot of positive peak and spreading in the trough) that is not true 
to the exact solution. 

The two-step method is also competitive with the straight numerical computation 
as far as computer time goes. Compilation time for (7) was 3.2, 3.3, and 3.4 seconds 
of CPU in three separate trials, while (9) required 4.3, 5.1, and 5.2 seconds. To run 
(7) through 65 time steps took 0.4,0.5, and 0.6 seconds; 65 steps of (9) used 0.4,0.6, 
and 0.6. Thus the run times are essentially equivalent while the difference in 
complilation time is of no practical concern. 
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GENERALIZATION AND THEORY 

The two-step procedure outlined above is valid for a large class of problems. 
Suppose we have a system of the form 

3Y(X, ,***, x,, t) 

at 
=Ay(xl,...,xn, t), 

where A is some operator on an (n + 1)-dimensional complex-valued vector space 
and y(x, ,..., x,, t) is an n + 1 vector. We split A into the sum of operators L and N, 
where L is such that 

aypt = Ly, (11) 

which with chosen initial and boundary conditions, can be solved analytically. 
Operator L must be a closed operator defined on a dense linear subspace of a Banach 
space B. We interpret Ly as being the linear terms from Ay, while Ny consists of the 
nonlinear terms, although this labeling is not critical. 

Thus, (10) becomes 

ay/8t = Ly + Ny. (12) 

This sort of equation can be studied with functional analysis techniques; see, for 
instance [4]. We proceed formally to solve (12) with a variation of parameters 
argument. 

We first look to solve homogeneous equation (11) with the given initial and 
boundary conditions. In our two-step method we deliberately choose L such that (11) 
has an analytic solution which we may denote y,(t). Equation (8) then corresponds to 
y,(t + At) which we denote y*. 

If we also solve (11) formally we find 

ya = e”-‘O’L Yo, 

where to is some initial time and y, is the solution at to. The exponential factor is well 
defined for L as specified; etL is then a bounded-operator-valued function on B. (For 
background, see 15, Chap. VIII].) 

Following the lead of the classic variation of parameters derivation we now replace 
y. with ye(t) and use (13) in (12). The resulting expression for the particular solution 
is 

yo= c’ e(‘-“‘LNy(t) dt 

(This is well defined whenever Ny is an integrable function.) 
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Thus, the total solution to (12) may be written as 

y(t) = y,(t) $ (' e"-"LNy(r) dr. 
to 

(15) 

So, in a given time step, we compute y(t, + dt) as 

y(to + At) = y” + [;+At e(to+At-T)LN(y(r)) ds. (16) 

Our two-step scheme is, therefore, approximating the above integral by (dt) NY(&), 
the computing the term numerically; compare with (9). Of course, this is just the 
simplest such approximation of the integral in (16); one could evaluate Ny at some 
midpoint rather than at t,, or approximate the integral with three points, for example. 

CONCLUSIONS 

We have introduced a two-step scheme for improved accuracy in the numerical 
solution of nonlinear partial differential equations. In a simple experimental case this 
method reduced the error of a basic numerical scheme without appreciable increase in 
computing time. 

This paper is meant to be just an introduction to the possibilities of this two-step 
method. As a next move it would be very illuminating to try an experiment such as 
the one we have performed on a solvable nonlinear P.D.E.; that is, one for which the 
exact solution is known in closed form. In that case we would be able to see very 
clearly how well the two-step version works compared to a straight numerical 
scheme, for a variety of such schemes. Work must also be done with real-life 
problems to see what difficulties arise in actually implementing a two-step scheme 
with more involved equations. 

Mathematically there is much analysis to be done, complicated by the fact that 
most of it is nonlinear analysis. We need to know sources and magnitudes of errors 
with the two-step scheme, and optimum approximations for the integral in (16) in 
order to minimize errors. There are also questions of convergence of the method. It 
may be that with certain approximations to the integral in (16) we could increase the 
size of our time steps significantly. 

The method proposed here may have utility for a wide range of geophysical 
problems including numerical weather prediction. By computing a linear solution at 
each time step, and only evaluating the nonlinear components numerically, a major 
source of computational error may be avoided. 
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